Principal component analysis for Hilbertian functional data
نویسندگان
چکیده
منابع مشابه
Functional principal component analysis of fMRI data.
We describe a principal component analysis (PCA) method for functional magnetic resonance imaging (fMRI) data based on functional data analysis, an advanced nonparametric approach. The data delivered by the fMRI scans are viewed as continuous functions of time sampled at the interscan interval and subject to observational noise, and are used accordingly to estimate an image in which smooth func...
متن کاملOn convergence of sample and population Hilbertian functional principal components
In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...
متن کاملMultilevel Functional Principal Component Analysis for High-Dimensional Data.
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire data set at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be ...
متن کاملFunctional Principal Component Analysis for Longitudinal and Survival Data
This paper proposes a nonparametric approach for jointly modelling longitudinal and survival data using functional principal components. The proposed model is data-adaptive in the sense that it does not require pre-specified functional forms for longitudinal trajectories and it automatically detects characteristic patterns. The longitudinal trajectories observed with measurement error are repre...
متن کاملPrincipal component models for sparse functional data
The elements of a multivariate data set are often curves rather than single points. Functional principal components can be used to describe the modes of variation of such curves. If one has complete measurements for each individual curve or, as is more common, one has measurements on a fine grid taken at the same time points for all curves, then many standard techniques may be applied. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2020
ISSN: 2383-4757
DOI: 10.29220/csam.2020.27.1.149